MENU

NOI2006 最大获利(最大权闭合子图)

2018 年 05 月 01 日 • 阅读: 1117 • 图论阅读设置

[NOI2006]最大获利

  • Time Limit: 5 Sec
  • Memory Limit: 64 MB
  • Submit: 6408
  • Solved: 3097

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。

【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。

【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。


题目链接

https://www.luogu.org/problemnew/show/P4174

题意

最大获利问题。

题解

最大权闭合子图,关键在构图。

若a,b之间有一条收益为c的边,则新建一个点,点权为c,分别向a,b连边,a,b点权为他们的花费,这样转换成求最大权封闭子图,详见胡伯涛论文,s向正权点连边(容量为权值),负权点向t连边(容量为权值的绝对值),可以证明一个方案和一个割一一对应。 ——黄学长

代码

  • Accepted :100
  • 代码:C++11,2.48KB
  • 耗时/内存:848ms, 23570KB
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <queue>
using namespace std;
const int maxn = 500010;
int N, NP, NC, M;
const int inf = 0x3f3f3f3f;
struct Edge
{
    int u, v, cap;
    Edge() {}
    Edge(int u, int v, int cap): u(u), v(v), cap(cap) {}
} es[maxn];
int R, S, T;
vector<int> tab[maxn]; // 边集
int dis[maxn];
int current[maxn];
void addedge(int u, int v, int cap)
{
    tab[u].push_back(R);
    es[R++] = Edge(u, v, cap); // 正向边
    tab[v].push_back(R);
    es[R++] = Edge(v, u, 0); // 反向边容量为0
    // 正向边下标通过异或就得到反向边下标, 2 ^ 1 == 3 ; 3 ^ 1 == 2
}
int BFS()
{
    queue<int> q;
    q.push(S);
    memset(dis, 0x3f, sizeof(dis));
    dis[S] = 0;
    while (!q.empty())
    {
        int h = q.front();
        q.pop();
        for (int i = 0; i < tab[h].size(); i++)
        {
            Edge &e = es[tab[h][i]];
            if (e.cap > 0 && dis[e.v] == 0x3f3f3f3f)
            {
                dis[e.v] = dis[h] + 1;
                q.push(e.v);
            }
        }
    }
    return dis[T] < 0x3f3f3f3f; // 返回是否能够到达汇点
}
int dinic(int x, int maxflow)
{
    if (x == T)
        return maxflow;
    // i = current[x] 当前弧优化
    for (int i = current[x]; i < tab[x].size(); i++)
    {
        current[x] = i;
        Edge &e = es[tab[x][i]];
        if (dis[e.v] == dis[x] + 1 && e.cap > 0)
        {
            int flow = dinic(e.v, min(maxflow, e.cap));
            if (flow)
            {
                e.cap -= flow; // 正向边流量降低
                es[tab[x][i] ^ 1].cap += flow; // 反向边流量增加
                return flow;
            }
        }
    }
    return 0; // 找不到增广路 退出
}
int DINIC()
{
    int ans = 0;

    while (BFS()) // 建立分层图
    {
        int flow;
        memset(current, 0, sizeof(current)); // BFS后应当清空当前弧数组
        while (flow = dinic(S, 0x3f3f3f3f)) // 一次BFS可以进行多次增广
            ans += flow;
    }
    return ans;
}
int main()
{
    while (scanf("%d%d", &N, &M) != EOF)
    {
        int sum = 0;
        R = 0;
        S = 0, T = N + M + 1;
        for (int i = 0; i <= T; i++)
            tab[i].clear();
        for (int i = 1; i <= N; i++)
        {
            int cap;
            scanf("%d", &cap);
            addedge(S, i, cap);
        }
        for (int i = 1; i <= M; i++)
        {
            int u, v, w;
            scanf("%d%d%d", &u, &v, &w);
            addedge(u, N + i, inf);
            addedge(v, N + i, inf);
            addedge(N + i, N + M + 1, w);
            sum += w;
        }
        printf("%d\n", sum - DINIC());
    }
    return 0;
}

停留了很久,学到了很多。


The end.
2018-05-01 星期二
最后编辑于: 2018 年 05 月 27 日